Serum starvation activates NF-κB through G protein β2 subunit-mediated signal.
نویسندگان
چکیده
Several cell stresses induce nuclear factor-kappaB (NF-κB) activation, which include irradiation, oxidation, and UV. Interestingly, serum-starving stress-induced NF-κB activation in COS cells, but not in COS-A717 cells. COS-A717 is a mutant cell line of COS cells that is defective of the NF-κB signaling pathway. We isolated genes with compensating activity for the NF-κB pathway and one gene encoded the G protein β2 (Gβ2). Gβ2 is one of the G protein-coupled receptor signaling effectors. In COS-A717 cells, Gβ2 expression is significantly reduced. In Gβ2 cDNA-transfected COS-A717 cells, the NF-κB activity was increased along with the recovery of Gβ2 expression. Furthermore, serum-starving stress induced the NF-κB activity in Gβ2-transfected COS-A717 cells. Consistently, the serum-starved COS cells with siRNA-reduced Gβ2 protein expression showed decreased NF-κB activity. These results indicate that Gβ2 is required for starvation-induced NF-κB activation and constitutive NF-κB activity. We propose that serum contains some molecule(s) that strongly inhibits NF-κB activation mediated through Gβ2 signaling.
منابع مشابه
Aggregation of β2 integrins activates human neutrophils through the IκB/NF-κB pathway.
Neutrophils are now considered central to the pathogenesis of most forms of acute lung injury. Neutrophils do not cause damage while suspended in the bloodstream; however, a release of cytotoxic agents occurs when neutrophils are adherent to endothelium, epithelium, or extracellular matrix proteins in the interstitium. Such neutrophil adherence is mediated predominantly through β2 integrins (CD...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملBidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes.
BACKGROUND Tumor necrosis factor-α and other proinflammatory cytokines activate the canonical nuclear factor (NF)-κB pathway through the kinase IKKβ. Previously, we established that IKKβ is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy. However...
متن کاملEicosapentaenoic Acid (EPA) Induced Macrophages Activation through GPR120-Mediated Raf-ERK1/2-IKKβ-NF-κB p65 Signaling Pathways
Objectives: To investigate the immunomodulatory effect and molecular mechanisms of Eicosapentaenoic acid (EPA, a typical kind of n-3PUFAs) on RAW264.7 cells. Methods: A variety of research methods, including the RAW264.7 cells culture, cell proliferation assays, morphologic observations, measurements of NO production, cytokine assays, nuclear protein extractions, western blot analyses and NF-κB...
متن کاملThe NS1 protein of influenza A virus blocks RIG-I-mediated activation of the noncanonical NF-κB pathway and p52/RelB-dependent gene expression in lung epithelial cells.
Influenza A virus (IAV) infection of epithelial cells activates NF-κB transcription factors via the canonical NF-κB signaling pathway, which modulates both the antiviral immune response and viral replication. Since almost nothing is known so far about a function of noncanonical NF-κB signaling after IAV infection, we tested infected cells for activation of p52 and RelB. We show that the viral N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- DNA and cell biology
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2012